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Abstract

Predicting traffic from passenger pickup / drop-off demands based on historical mobility

trips has been of great importance towards better vehicle distribution for the emerging on

demand mobility services and allocating resources optimally. However, existing approaches

for traffic flow forecast perform well in modeling and predicting, but they cause inefficiency

when dealing with multi-dimensional OD data. This problem is further aggravated when ad-

ditional dimensions of vehicular models, climatic conditions and so on are added. Hence,

it boils down to the development of efficient tensor decomposition methods and prediction

models to deal with this problem.

This thesis studies the latest state-of-the-art techniques applied to modelling passenger de-

mands, and proposes new methods in achieving better results over the existing ideas. Fur-

thermore, merely generating accurate predictions is not our end goal. We wish to provide a

full featured interactive web application which users can use to select their source and des-

tination points on an interactive map, and gain information on the predicted traffic from

the source and destination regions.
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Chapter 1

Introduction

Last mile connectivity services have propped up significantly in the recent years. Ride-

sharing services such as Uber, Lyft and OLA, delivery services like Swiggy and Dunzo, and

e-commerce giants such as Amazon, Walmart and Snapdeal have enabled the proliferation

of on-demand mobility and logistics for consumer products and services. These services

also serve as a backbone to the convenience market industry, which was set for double-digit

Crude Annual Growth Rate (CAGR) in several Asian countries in recent years [oGD17].

As such, it is absolutely critical for these businesses to have an in-depth understanding of

the consumer demand flow patterns as they occur and change over time, to achieve demand

- resource balance. A miscalculation between the demand and allocation may cause severe

problems including, but not limited to, congestion, resource depletion and may drive down

customer satisfaction.

For the purpose of this thesis, we study the problem of predicting mobility demands

(passenger pickup and drop-off) accurately. While we focus on a single problem domain,

the terminologies we develop can be easily extended into other domains mentioned. As an

example, for the purpose of delivery scheduling, we can model the storage warehouses as

pickup points and customer addresses as drop-offs, and using this modified input.
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1.1 Origin-Destination Matrices

Origin-Destination Matrices (ODMs) are extensively used for modelling traffic movement

for large cities. They reflect demand patterns of traffic networks and play important roles

in traffic engineering.

Given the trip data, a geographical region for which the ODM is desired, and the time

period of consideration, we begin by marking up different mutually exclusive and exhaustive

territories, between which the demand characteristics are to be studied. We then define a

variable Ti,j as the number of inter-zonal trips from origin zone i to the destination zone j.

Doing this for all the different ordered pairs of zones (i, j) generates the ODM for us. The

diagonal values, i.e. from zone i to itself, denote the number intra-zonal trips made.

Illustrative Table

O/D Zone 1 Zone 2 Zone 3

Zone 1 T1,1 T1,2 T1,3

Zone 2 T2,1 T2,2 T2,3

Zone 3 T3,1 T3,2 T3,3

Table 1.1: Example of an Origin-Destination Matrix

However, this two dimensional matrix merely provides us with trip statistics for a

singular time interval. We can extend our ODMs by dividing our temporal duration into

smaller intervals, and then stack the individual ODMs obtained for these specific intervals,

to obtain a spatio-temporal three-dimensional tensor. This final OD tensor serves as the

primary input and output of our modelling framework.

1.1.1 Advantages of OD Tensor based Modelling

ODMs have specific advantages which have led to their widespread popularity of use:

• First and foremost, they’re extremely time-cost effective, when it comes to collection

of data to the processing of the raw data into the desired matrix format. Data can be
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processed directly from the raw trip logs, which is a major advantage, compared to other

methods.

• They are suitable for use over a wide range of granularity pertaining to the size of

the area whose characteristics they wish to represent. This allows for flexible modelling of

both smaller and large areas, without much loss of robustness.

• They provide a route invariant picture of the traffic flows from one zone to another.

This is helpful for models dealing with the inference of higher level map topologies (for use

in delivery scheduling), than finer level flows (for example, traffic along individual routes).

1.2 Issues with Current Approaches

1.2.1 Performance

Despite considerable effort, traffic modelling is still an active area of research with a long

way to go. New improvements are being introduced every year, and the field itself sees

a paradigm shift every few years, the most recent being the shift to graph convolutional

approaches from various time-series based neural networks

1.2.2 Capturing Meaningful Representations

It is difficult for neural network based approaches to extract spatial and temporal features

from the input jointly. The representative ability of these networks are hindered seriously

in the presence of narrow constraints. As we explain later, a number of these features can

be learned through specific graph-based modelling techniques, to mitigate this issue.

1.3 Problem Statement

We aim to develop a robust and scalable end-to-end traffic visualization module, which

takes as input Origin-Destination matrix based on taxi-trip data for any region over a

duration of time, and is able to model and predict the demand flow through the same
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region in the near future. This is broadly stated to be achieved through two smaller sub-

tasks, namely the prediction of future demand through the use of our modelling framework

to identify complex features that capture spatio-temporal influences, and developing an

interactive web application for visualizing our generated predictions.

1.4 Chapter Conclusion

This chapter provides a rough background for the topics covered in this thesis. The next

chapter gives related work that has been conducted in the domain and elucidates the

contributions of the prior works. Chapter 3 provides an introduction to the dataset used in

experimentation and explains the data representation strategies employed for constructing

our model inputs, while also mathematically formulating the problem statement. Chapter 4

walks us through the front-end segment of our work, providing a detailed explanation of the

capabilities of our interactive data visualization module. In chapter 5, we then introduce the

related concepts of graph convolutions, and representation of signals. Chapter 6 provides an

exposition of existing models which serve as the target baselines for our work, while chapter

7 introduces our approach to improve the modelling framework. Chapter 8 mentions the

results of all our investigations. Chapter 9 contains some of the additional approaches we

tried, but did not live up to their promise. Finally Chapter 10 concludes our findings and

present the scope for future.
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Chapter 2

Related Work

This chapter provides a brief overview of the prior works that have employed Spectral

Decomposition and Deep Learning based techniques to model various OD tensor based

prediction problems.

2.1 Background

Deep learning based approaches have become ubiquitous in many domains of demand

modelling. By as early as 2015, Convolutional LSTM Networks introduced in [XCW+15],

gained popularity as the preferred methods of choice for modelling spatio-temporal features.

These models replaces regular matrix multiplication of vanilla LSTMs with convolutions.

These methods led to the further rise of Convolutional Residual Networks in [ZZQ16].

2.2 Time Series Modelling

Building on [XCW+15, ZZQ16], [ZSZH18] showed one of the first points of application

of these models to the domain of passenger demand modelling. Using Convolutional

LSTM-based encoder-decoder network with MLP-based attention, they modelled New York

TaxiNYC data from 2009 to 2015.
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2.3 Graph Convolutions

A number of papers have worked on the problem of generalizing neural networks to work

on arbitrarily structured graphs, with some of the most ground-breaking work presented in

[KW16], [DBV16] and [BGAL19].

These works not only show the usefulness of Graph Convolutions in learning esoteric

representations of node similarities, but also provide a theoretical basis behind the usage

of these techniques under specific domains. GCNs currently form the state of the art in

the problem domain we’re pursuing.

2.4 Chapter Conclusion

This chapter provided details of the some of the existing techniques in popular use. A

few results of these evaluations are also summarized in chapters 8 and 9. In next chapter,

we discuss the dataset we have used for evaluating our hypothesis and formally define the

passenger demand prediction problem.
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Chapter 3

Dataset and Problem Definition

In this chapter, we present the dataset used for testing our methods and mention our

approach in modelling the raw data. We also provide a formal definition of the problem

statement in mathematical terms for further extension into other domains.

3.1 Green Taxi Trip Data

For the purpose of testing out our hypothesis and obtaining baseline scores on the previous

state-of-the-art models, we make use of 2014 Green Taxi Trip Data [TT20] for the city of

New York. The dataset is freely available at the NYC Open Data website for analysis and

study, and consists of over 15.8 million records of the iconic NYC Green Taxi trips made

in over 12 months of 2014.

Each record of a taxi trip comprises information related to the pickup and drop-off

dates, times, geographical locations, and other essential information such as trip amount,

distance, passenger counts and so on, totalling over 20 categories.

3.1.1 Pre-Processing

For the sake of brevity, we drop the fields unimportant to our cause and only keep the

minimal essential categories of information, namely the following:

7



Data Fields

Column Name Description Type

pickup datetime The date and time when the meter was engaged Date & Time

dropoff datetime The date and time when the meter was disengaged Date & Time

pickup latitude Latitude where the meter was engaged Number

pickup longitude Longitude where the meter was engaged Number

dropoff latitude Latitude where the meter was disengaged Number

dropoff longitude Longitude where the meter was disengaged Number

Table 3.1: Data Fields used from 2014 Green Taxi Trip Data

Furthermore, we found that a number of these trip records had noisy values of longitude

and latitudes, which would place them outside the geographical boundary of New York

City. Hence, we only considered the taxi trips occurring from a point within the city and

terminating to a point within the city. This was made possible by considering a geographical

extent (in terms of longitude and latitude) for the city. We considered the following values

of the extent for pruning our data, available from [oCP13]:

Extent

West: -74.257159 East: -73.699215

North: 40.915568 South: 40.495992

Table 3.2: Geographical Extent of New York City

We simply consider the trips for which all the values of latitude and longitude lie within

the above mentioned ranges. After this massive cleanup, we obtain around 800,000 clean

trip records, which we model in the manner described in the next section.
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3.2 Problem Definition

We make use of the approach described in [ZZQ16], [ZSZH18] and [YYZ17] for modelling

our OD tensor in graphical terms.

3.2.1 Maps to Grids

We divide the complete geographic area into mutually exclusive and exhaustive rectangular

grids, with each grid denoting a specific region or zone on the city map. We obtain the

outline bounding box for New York City from the lower-left coordinate (Slatitude,Wlongitude)

and the upper right coordinate (Nlatitude, Elongitude) values obtained from Table 3.2.

To divide the obtained bounding box into N×M grids, we simply obtain individual grid

lengths and breadths as l =
Elongitude−Wlongitude

N
and l = Nlatitude−Slatitude

M
respectively. The

values of l and b intuitively define the total geographic area per grid under consideration.

The larger (or smaller) these values, the larger (or smaller) is the actual geographical area

considered under a particular grid, and coarser (or finer) is the analysis.

We denote a grid as gk with k ∈ [1, ..., N ∗M ] for some natural ordering of individual

grids (row-major or column-major order). Hence, we also obtain the bounding boxes of

each individual grids, which we denote as (gSk , g
W
k ), and (gNk , g

E
k ).

We say a geographical location p = (latitudep, longitudep) lies within a grid gk (p ∈ gk)

iff latitudep ∈ [gSk , g
N
k ] & longitudep ∈ [gWk , g

E
k ]. Using the trip record fields mentioned in

Table 3.1, we generate the source grid gsource and destination grid gdestination for each trip

and append them to the individual trip records:

Generated Fields

Column Name Description Type Notation

source grid The grid where the meter was engaged Number src grid

destination grid The grid where the meter was disengaged Number dest grid

Table 3.3: Generated Fields from the Trip Data

9



Finally we obtain a representation for individual trip records as the tuple:

(pick time, drop time, pick lat, pick long, drop lat, drop long, src grid, dest grid)

3.2.2 Demand Mapping as Graphs

Let T to be a set of taxi trips over a grid map G. Given the t-th time interval [startt, endt),

we compute the demand map Mt = {δtk,l}gk,gl∈G where:

δtk,l = {|τ ∈ T | |τsrc grid = gk ∧ τdest grid = gl ∧ τpick time ∈ [startt, endt)}

Hence we have organized the 2D demand matrix Mt ∈ RN∗M×N∗M . Stacking these

matrices, in a sequence ordered by their time intervals generates the 3D demand tensorM

over the grid map G.

Each of these individual demand maps forms a subset of an overall demand graph G.

Here in the t-th timestep, in graph Gt = (Vt,Mt), where Vt ∈ RN∗M×F where F is the

feature dimension corresponding to the observations regarding the N ∗M individual grids.

In our work, we keep F set to 2, considering only the net outgoing and incoming traffic

from an individual region.

3.2.3 Demand Prediction

Considering a grid map G, T demand matrices {Mi | i = 1..., T} over the previous T

time intervals corresponding to Gi demand graphs, we try to predict U demand matrices

{Mi | i = T + 1, ..., T + U} for the next U time intervals.

3.3 Chapter Conclusion

In this chapter, we introduced the dataset we use to test our hypotheses and also described

the data pre-processing and representation process using mathematical constructs. This
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enabled us in obtaining a cleaned up OD tensor and vertex lists from our raw taxi trip data,

and also laid the foundation of our formal problem statement. The next chapter makes use

of the output prediction tensors constructed using the same principles to visualize passenger

taxi demands using an interactive tool.
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Chapter 4

Interactive Web Module for

Visualization

The data processing pipeline presented in the previous chapter serves as the desired format

for both the input and the output of our modelling framework, which is described later.

We now take a slight detour and describe our web application which we have developed for

the purpose of easy visualization of the predicted output.

4.1 Base Web Application

For a basic running implementation of a React based application, we make use of starter

code provided by [Tur19]. The application makes use of Leaflet map API and OpenWeath-

erMap API for querying map and weather data respectively. The application allows the

user to click on a specific location on a map, and the bottom carousel instantaneously

portrays the latest weather predictions for the same area.
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4.2 Improvised Traffic Demand Application

We revamp the application to offer a real-time map based interface for choosing the source

point of the journey through a simple left click, and the destination point through a right

click. The map markers appear automatically, offering information relating to latitude

and longitude, and trace the path of your supposed journey through the different grids.

Additionally, the traced path fires a backend query for searching the internal database,

corresponding to the predicted traffic information between those two regions, which is

displayed on the bottom carousel as incoming and outgoing traffic volume, along with the

weather information in real-time.

This query generation is done by locating the latitude and longitude information from

the source and destination markers, which in turn determines their respective grid indices.

These grid indices are used in a dictionary lookup for the respective pairwise traffic infor-

mation.

For a simple example, imagine being in the Carnegie Hill neighbourhood of New York

city, and wishing to travel to the Bronx, which is a major tourist attraction due to its

world-famous The Bronx Zoo.

Starting Point: Carnegie Hill

13



Fig. 4.1: Initial Point of the Trip

Simply, clicking on the map layout of the start and end position, will activate a couple

of markers and a path tracer, which queries the database regarding the predicted traffic

volume for the upcoming few days, displayed on the carousel below, along with the weather

information in real-time.

Destination Point: The Bronx

Fig. 4.2: Destination Point of the Trip

4.3 Chapter Conclusion

In this chapter, we provided a tour of front-end web application, developed primarily for the

purpose of providing easy access to predicted demand flow visualization. In next chapter,

we provide an introduction to spectral decomposition techniques for graphs, and explain

the ideas behind using those techniques for building better modelling approaches.
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Chapter 5

Introduction to Graph Convolutional

Networks

This chapter provides an overview of specific graph convolution techniques frequently used

in the analysis of demand graphs. The material presented here follows from the seminal

work presented in [KW16] and [DBV16].

5.1 Definitions

Currently, most graph neural network models have a somewhat universal architecture in

common and are referred as Graph Convolutional Networks or GCNs. They are called

convolutional, because filter parameters are typically shared over all locations in the graph.

For these models, the goal is then to learn a function of signals / features on a graph

G = (V , E) which takes as input:

• A node description list V containing a feature description xi ∈ RF for every node

i ∈ [1, 2, ..., N ] such that V ∈ RN×F , where F is the number of input features, and

• A representative description of the graph structure in matrix form, typically in the

form of an weighted adjacency matrix E ∈ RN×N ,

and produces a node-level output Z ∈ RN×D feature matrix, where D is the number of

15



output features per node.

Every neural network layer can then be written as a non-linear function H(l+1) =

f(H(l), E), with H(0) = V and H(L) = Z, L being the number of layers. The specific

models then differ only in how f(·) is chosen and parameterized.

5.1.1 Example

As an example, we consider the following form of a layer-wise propagation rule:

f(H(l), A) = σ(AH(l)W (l)),

where W (l) is a weight matrix for the l-th neural network layer, A is a weighted adjacency

matrix (alias for E) and σ(·) is a non-linear activation function like the ReLU [Aga18].

5.2 Obtaining Graph Laplacian

Multiplication with A means that, for every node, we sum up all the feature vectors of all

neighboring nodes but not the node itself. We fix this by enforcing self-loops in the graph

by we simply add the identity matrix to A.

The second limitation is that A is typically not normalized and therefore the multipli-

cation with A will completely change the scale of the feature vectors. Normalizing A such

that all rows sum to one, i.e. D−1A, where D is the diagonal node degree matrix such

that Dii = ΣjAi,j, gets rid of this problem. Multiplying with D−1A now corresponds to

taking the average of neighboring node features. In practice, dynamics get more interesting

when we use a symmetric normalization, i.e. D−
1
2AD−

1
2 . Combining these two tricks, we

essentially arrive at the propagation rule introduced in [KW16]:

f(H(l), A) = σ(D̂−
1
2 ÂD̂−

1
2H(l)W (l))
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with Â = A + IN , where IN is the identity matrix of order N and D̂ is the diagonal node

degree matrix of Â. Expanding Â in the above expression, we obtain the expression of the

first-order approximation of graph Laplacian L as:

L = IN − D̂−
1
2AD̂−

1
2

5.3 Spectral Filtering

As L is a real symmetric positive semidefinite matrix, it has a complete set of orthonormal

eigenvectors {ul}n−1l=0 ∈ Rn, known as the graph Fourier modes, and their associated ordered

real non-negative eigenvalues {λl}n−1l=0 , identified as the frequencies of the graph such that

L = UΛUT where Λ = diag([λ0, ..., λn−1]) ∈ Rn×n. The graph Fourier transform of a signal

x ∈ Rn is then defined as x̂ = UTx ∈ Rn, and its inverse as x = Ux̂ [SNF+13].

The convolution operator on graph ?G is defined in the Fourier domain such that x?Gy =

U((UTx)�(UTy)), where � is the element-wise Hadamard product. It follows that a signal

x is filtered by gθ as

y = gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)UTx

A non-parametric filter, i.e. a filter whose parameters are all free, would be defined as

gθ(Λ) = diag(θ), where the parameter θ ∈ Rn is a vector of Fourier coefficients.

5.4 Using Chebyshev Approximation

Using the above representation of gθ, we can develop a parameterized polynomial version

of the above filter as,

gθ(Λ) = ΣK−1
k=0 θkΛ

k

However, the above approximation is computationally expensive with O(n2) operations

because of the Λ being in Rn×n. A solution to this problem is to parameterize gθ(L) as
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a polynomial function that can be computed recursively using L itself. By taking the

Chebyshev approximation,

gθ(Λ) = ΣK−1
k=0 θkTk(Λ̃)

the filtering operation can then be written as y = gθ(L)x = ΣK−1
k=0 θkTk(L̃)x, where Tk(L̃) ∈

Rn×n is the Chebyshev polynomial of order k evaluated at the scaled Laplacian L̃ =

2L/λmax − IN . Chebyshev polynomial Tk(x) of order k may be computed by the stable

recurrence relation,

Tk(x) = 2xTk−1(x)− Tk−2(x)

with T0 = 1 and T1 = x. Using the above two equations, and denoting xk = Tk(L̃)x ∈ Rn,

we can use the recurrence relation to compute xk = 2L̃xk−1−xk−2 with x0 = x and x1 = L̃x.

The entire filtering operation y = gθ(L)x = [x0, ..., xK−1]θ then costs O(K|E|) operations

which is suitable for sparse L.

5.5 Chapter Conclusion

In this chapter, we introduced some foundational concepts of Graph Convolutions and

Spectral Filtering techniques, and explained the proposed benefit of specific filters. The

next chapter presents some of the previously implemented ideas in this domain, which serve

as the baseline models for comparison with our approaches.
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Chapter 6

Baseline Models

This chapter provides an exposition of the various baseline models we have worked with.

To the best of our knowledge, the baseline models form the current state-of-the-art while

considering graph convolutional models for passenger demand forecasting.

6.1 Baseline Graph Convolution Network with CGRNNs

(STM-GCN)

Following the architecture given in [GLW+19], the authors argue that two important aspects

are largely are non-Euclidean pair-wise correlations between regions, and processing regions

only based on local information.

Hence they present different aspects of correlations between regions as graphs, whose

vertices represent regions and edges encode the pair-wise relationship among regions. First,

they use the proposed Contextual Gated Recurrent Neural Network (CGRNN) to aggregate

observations in different times considering the global contextual information. After that,

multi-graph convolution is applied to capture different types of correlations between regions.

Finally, a fully connected neural network is used to transform features into the prediction.

The following three features are used:

• Neighborhood: Neighborhood of a region is defined based on the spatial proximity.
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They construct the graph by connecting a region to its 8 adjacent regions in a 3 × 3 grid.

• Function Similarity: Region functionality could be characterized using its sur-

rounding points of interest for each category, and the edge between two vertices (regions)

is defined as the POI similarity:

AS,i,j = sim(Pvi , Pvj) ∈ [0, 1]

where Pvi , Pvj are the POI vectors of regions vi and vj.

• Transport Connectivity: Here, they define regions that are directly connected by

these roads as “connected” and the corresponding edge is defined as:

AC,i,j = max(0, conn(vi, vj)− AN,i,j) ∈ {0, 1}

where conn(u, v) is the indicator function of the connectivity between vi and vj.

6.2 Baseline Grid-Embedding based Multi-Task Learning

(GEML)

Following the architecture given in [WYC+19], we build our next baseline model which

broadly makes use of two grid-embedding features, due to the limitation of GCNs on grids

with low-scale demands:

• Geographical Neighborhood: For a grid gi, its geographical neighbor set is for-

mulated as:

Φi = {gj | dis(gi, gj) ≤ L}

where dis(gi, gj) denotes the spatial distance of these two grids’ centers, the straight length

from gi’s center to gj’s geographically, and L is a threshold of the distance which can

determine the range of neighborhood.

• Semantic Neighbourhood: For grid gi, within an arbitrary time slot t‘ = 1, 2, ..., t,
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we can obtain a set of its semantic neighbors via:

Ωi
t‘ = {gj | mi, j > 0 || mj, i > 0, mi, j ∈ Mt‘ , mj,i ∈ Mt‘}

where mi,j is the demand between grid i and grid j and Mt‘ is the demand tensor at

timestep t‘.

They make use the vanilla LSTM framework to aggregate observations in different

timesteps into a suitable representation. After that, they take the grid embedding vector

sequence {vi1, vi2, ..., vit} as inputs and further convert their learned input representation into

a periodic-skip LSTM which skips irrelevant sequential patterns. Finally they make use of

multi-task learning paradigm to train the framework on different loss objectives, namely

outbound traffic flow, inbound traffic flow and overall traffic flow. Rest of the details follow

from the paper.

6.3 Chapter Conclusion

In this chapter we have provided a brief overview of the different baseline models used in

our work. Working upon these models, we present our approaches in the next chapter.
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Chapter 7

Proposed Methodology

We now present our own model Iterative-GEML on top of the previous baseline models,

and also explain the motives behind pursuing our approaches.

7.1 Issues with Baseline GEML

7.1.1 Use of Grid-Embeddings

Grid embeddings are particularly inspired by the message passing schema of the GCNs.

While being powerful methods for learning features from spatio-temporal data, Grid Em-

beddings are particularly tricky to train in conditions of dense inputs. The original GEML

model only learns a joint representation of embedding outputs to generate the prediction

for the next timestep. To mitigate this effect, we condition the individual grid embed-

ding modules to generate the prediction for the next timestep using the same LSTM-based

encoder-decoder architecture which is used to learn the joint representations.
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Fig. 7.1: Original GEML Model

7.1.2 Multi-Task Learning

In the baseline GEML model, the authors made use of multi-task learning approach for

modelling different aspects of the expected output separately. While this technique holds

promise for sparse inputs, in our case, this situation leads to an overlap in the loss objectives,

which leads to model noise. Hence we only make use of singular objective functions to train

our model.

Fig. 7.2: Iterative-GEML Model

7.1.3 Chebyshev Filtering

As a final variation of our model, we generate the Chebyshev approximation representation

of the Grid Embedding input, and pass them in place of the original input. We propose

that this technique would help the model to learn better signals from the original input to

train the model.
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Fig. 7.3: Iterative-GEML Model with Chebyshev Filter

7.2 Chapter Conclusion

In this chapter, we have proposed our improved Iterative-GEML model for rectifying some

of the shortcomings of the original GEML model. The next chapter presents our evaluation

study on all of the introduced models and portrays the empirical promise of our approach.
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Chapter 8

Experiments and Results

This chapter describes the various experiments we tried out with model variations described

in the previous chapter. We ran all models under the same experimental settings, and

obtained results for the baselines as well as our own variations.

8.1 Experimental Setup

We pre-processed the dataset to generate demand graphs as described in Chapter 3. For

quicker testing, we have only made use of the first 3 months of the data. By default,

we set time interval to 1 hour, while training the model on the latest 24 hour data, before

generating predictions. For the Green Taxi Trip dataset, we used 20 × 20 grids to partition

the whole city of New York, where each grid covers 2.5km × 2.5km area. This gives us

over 400 individual grids covering the entire city of New York.

Since New York city is itself located alongside the Atlantic Ocean, we find that certain

portions of the map include water bodies and canals. While this issue might be less of

a problem in cases of grids covering two major islands, certain grids are almost entirely

covered by water bodies. This leads to unnecessary complexity in the STM-GCN and

GEML models, where we feed grid information in the form of weighted adjacency matrices.

As such, to reduce this complexity, we simply drop all the grids where the average traffic
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over a time interval considered is less than a specific threshold (30 cars in our case). This

gives us 55 land-connected grids to train our baseline and improved models.

The entire set of observations is processed into a 80-20 split for training and testing

subsets. Each individual model is trained for 10 epochs until convergence on the cross-

validation split of 0.20. The predictions are made in a multi-step forecasting manner with

rolling window approach. Hence, for every forecast on timestep t to t+ k, we make use of

the past t− 1 to t− 24 timesteps, where k ∈ [0, 1, 2, ...11].

8.2 Results

For each predicted demand graph Gpredt , we calculate the difference with the true demand

graph Gtruet , and further use this sequence of differences to calculate the grid-wise RMSE

error as:

RMSEgraph =

√
Σ(true,pred)∈Gtest(Gtruet .Mt − Gpredt .Mt)2

|Gtest|

Taking an average of the grid-wise RMSE values gives us the Aggregate Mean Grid

RMSE over the entire time window of consideration. Dividing by the size of the time-

window gives us the Average Mean Grid RMSE per hour.
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RMSE Scores: STM-GCN (with Chebyshev Filter)

Time Window

Forecast (hours)

Aggregate Mean Grid

RMSE (over entire time

window)

Average Mean Grid

RMSE (per hour)

1 4.2480 4.2480

2 10.6932 5.3466

3 16.5633 5.5211

4 21.9328 5.4832

5 27.9115 5.5823

6 33.9786 5.6631

7 40.0603 5.7229

8 46.4328 5.8041

9 52.5006 5.8334

10 58.4 5.8400

11 64.3907 5.8537

12 70.6188 5.8849

Table 8.1: RMSE Scores Obtained from Baseline STM-GCN Model with Chebyshev Filter
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RMSE Scores: GEML

Time Window

(hours)

Aggregate Mean Grid

RMSE (over entire time

window)

Average Mean Grid

RMSE (per hour)

1 4.4934 4.4934

2 8.9604 4.4802

3 13.3278 4.4426

4 17.1028 4.2757

5 23.0640 4.6128

6 29.3772 4.8962

7 34.8796 4.9828

8 40.04 5.0050

9 46.0476 5.1164

10 52.067 5.2067

11 58.4529 5.3139

12 64.4088 5.3674

Table 8.2: RMSE Scores Obtained from Baseline GEML Model
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RMSE Scores: Iterative-GEML

Time Window

(hours)

Aggregate Mean Grid

RMSE (over entire time

window)

Average Mean Grid

RMSE (per hour)

1 4.0374 4.0374

2 7.4940 3.7470

3 11.1495 3.7165

4 14.8464 3.7116

5 18.5975 3.7195

6 22.3176 3.7196

7 26.0092 3.7156

8 29.7288 3.7161

9 33.4638 3.7182

10 37.137 3.7137

11 40.8452 3.7132

12 44.5404 3.7117

Table 8.3: RMSE Scores Obtained from our Iterative-GEML Model

The Iterative-GEML approach provides us with a decent performance boost of 11%

across time windows. This needs to be further verified over bigger and varied datasets.
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RMSE Scores: Iterative-GEML with Chebyshev Filter

Time Window

(hours)

Aggregate Mean Grid

RMSE (over entire time

window)

Average Mean Grid

RMSE (per hour)

1 4.3775 4.3775

2 7.5054 3.7527

3 11.1315 3.7105

4 14.8376 3.7094

5 18.5565 3.7113

6 22.2624 3.7104

7 25.9770 3.7110

8 29.6880 3.7110

9 33.39 3.7100

10 37.080 3.7080

11 40.7627 3.7057

12 44.5104 3.7092

Table 8.4: RMSE Scores Obtained from our Iterative-GEML model with Chebyshev Filter

The further addition of Chebyshev filter adds an additional performance gain over long

time windows, however, might lead to a slight degradation in performance under shorter

time windows.

8.3 Chapter Conclusion

In this chapter, we have illustrated the results obtained from the various models we ex-

posited in the previous chapter. These results provide empirical evidence regarding the

robustness of our proposed approaches. Next chapter presents some additional approaches

that we developed over the course of our work.
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Chapter 9

Additional Approaches

This chapter describes the various experiments and model variations we tried out during

the course of this thesis, that didn’t meet the objectives that they were intended for.

While some models performed well compared under certain conditions, overall, they did

not perform well on evaluation metrics.

9.1 Iterative-GEML with Multi-Task Learning

While we had discarded the original Multi-Task Learning paradigm present in the original

GEML baseline model, we had done so because of the overlap among the different tasks.

Here we present the Iterative-GEML with the original Multi-Task Learning approach. As

expected, the results are nothing short of underwhelming.
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RMSE Scores: Iterative-GEML with Multi-Task Learning

Time Window

(hours)

Aggregate Mean Grid

RMSE (over entire time

window)

Average Mean Grid

RMSE (per hour)

1 4.5123 4.5123

2 9.0178 4.5089

3 12.9762 4.3254

4 18.1092 4.5273

5 22.43 4.4860

6 26.60400 4.4340

7 33.1919 4.7417

8 40.2256 5.0282

9 42.3513 4.7057

10 46.674 4.6674

11 56.3651 5.1241

12 55.6860 4.6405

Table 9.1: RMSE Scores Obtained from our Iterative-GEML Model with Multi-Task
Learning

9.2 Iterative-GEML with ARMA Filter

ARMA spectral filtering technique introduced recently in [BGAL19] has recently gained

traction as one of the computationally efficient techniques. Inspired by popular statistical

technique of Auto Regressive Moving Average (ARMA) models, these filters are shown to

be robust to perturbations in underlying graphs, while being stable enough to be computed

efficiently. While a detailed analysis of these filters is out of the scope of this thesis, we

tried running our Iterative-GEML model with ARMA filters.
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RMSE Scores: Iterative-GEML with ARMA Filter

Time Window

(hours)

Aggregate Mean Grid

RMSE (over entire time

window)

Average Mean Grid

RMSE (per hour)

1 4.5348 4.5348

2 9.0164 4.5082

3 13.4991 4.4997

4 18.8588 4.7147

5 22.2360 4.4472

6 28.7490 4.7915

7 34.3959 4.9137

8 34.8024 4.3503

9 43.6122 4.8458

10 45.044 4.5044

11 49.5913 4.5083

12 60.7236 5.0603

Table 9.2: RMSE Scores Obtained from our Iterative-GEML Model with ARMA Filter

9.3 Chapter Conclusion

In this chapter, we have presented experimental results from additional variations that we

tried on our proposed models. We leave the analysis of these results as a thought for the

future. The next chapter offers a conclusion for the entire thesis, and mentions the scope

of future work.
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Chapter 10

Conclusion and Future Work

In this work, we studied the problem of predicting multi-step city-wide traffic volume and

developed a robust traffic prediction framework. On the user interface side of things, we

implement an interactive map-based web application for querying our results.

On the theoretical side, we attempt to solve the problem by implementing recent ad-

vances in deep learning based approaches. We build models employing Graph Convolutional

Networks, Spectral Decomposition and Approximation techniques to emphasize the effects

of representative city-wide traffic patterns on each-step prediction during the decoding

phase.

In this work, we have implemented and obtained RMSE scores for NYC Green Taxi Trip

Data for the months of January to March 2014 for two different baseline models. We have

experimented with a hybrid approach to fuse the features of two baseline models in order

to achieve better performance, and obtained empirical results. There are a few further

directions this project could take.

10.1 Testing on Varied Datasets

Currently, we only train for the first three months of 2014 in order to validate our hypothesis

quickly. Hence, a natural next step for this work would be to validate our findings on larger
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and diverse sets of data. One possible way of achieving this objective could be to use the

Green Taxi data from all years (2013 - 2019). Another possible alternative would be to use

datasets for other cities around the world.

10.2 Making Use of Attention-based Transformer Networks

Recent trends in attention-based transformer networks have shown immense potential in

terms of better empirical performance [ZSZH18, YWK+18]. One of the most seminal works

by [VSP+17] have shown that given a more natural approach to modelling long target

sequences as weighted sums of smaller input subsequences, we can obtain better evaluation

scores. Hence, the next possible strategy would be to make use of Transformer Networks

to model this problem.

35



36



References

[Aga18] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv

preprint arXiv:1803.08375, 2018.

[BGAL19] Filippo Maria Bianchi, Daniele Grattarola, Cesare Alippi, and Lorenzo Livi.

Graph neural networks with convolutional arma filters. arXiv preprint

arXiv:1901.01343, 2019.
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