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Previous loT Approaches: ML-On-Cloud
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Limitations of ML-On-Cloud

@

D Poor Efficiency in Battery-Operated Scenarios

o

High Communication Latency

Data Privacy Considerations




Solution: ML-On-Edge-Devices (TinyML)

loT Devices
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v/ No need to communicate data
to the cloud for inference.
AEEETTETENEN. .
Microcontroller
v Suitable for battery-operated
scenarios as communication
latencies are eliminated.

¢’ Data doesn't leave the
source.




Advances in TinyML Models

Decision Trees Recurrent Neural Networks
Bonsai FastGRNN
ICML 2017 NeurlPS 2018
Nearest Neighbors Special Pooling Operators
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ProtoNN R 2
ICML 2017 NeurlPS 2020




Frameworks: The Task and the Challenges

Problem Statement: To generate efficient C / C++ codes for TinyML
models, which can be executed on tiny microcontrollers with KBs of

main memory.

Challenge 1: Which number representation should the program use?
Challenge 2: What bitwidth should the program assign to a variable?

Challenge 3: What about memory management?



Challenge: Representation Independence
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Challenge: Bitwidth Exploration

Linear Classifier
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Very Large Exploration Space: For a program with N variables and k bitwidth

options, the total number of possible assignments is kN




Challenge: Memory Fragmentation

5 = malloc();
0

b = MatMul(o, <),
d = MatMul(a, b);
free(a);
free(c);

e = malloc();

& = MatMul(s, ),
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MinUn: Addressing the Challenges

MinUn Compiler: Offers representation and platform-independent
design, which is easily integrable with any representation of choice.

Haunter Bitwidth Exploration Algorithm: Makes use of information
regarding both the variable size and it's impact on overall program
accuracy to generate candidate bitwidth assignments, within a strict
memory budget.

Optimum Memory Management: Makes use of Knuth's Algorithm
X, for optimally assigning scratch space to variables.



MinUn: Overview
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Related TinyML Frameworks

/" TFLite

CVPR 2018

-> Compiles floating-point
code into zero-skew code.

-> Only generates uniform
bitwidth (8 / 16-bit weights
and 32-bit biases) codes.

-> Uses TFLite interpreter
with memory overheads.
Leaves memory handling
to the end user.

\_ /

/ SeeDot

PLDI 2019

-> Compiles floating-point
code into fixed-point code.

-> Only generates uniform
bitwidth (8 / 16-bit) codes.

-> Ignores the memory
fragmentation problem and
assumes sufficient RAM is
always available.

/" Shiftry

OOPSLA 2020

-> Compiles floating-point
code into fixed-point code.

-> Generates variable
bitwidth (8 and 16-bit)
codes.

-> Offers a suboptimal
greedy heuristic for
preventing fragmentation.
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Experiments

4 Models ) ( Datasets \
e FastGRNN e CIFAR e MNIST
e ProtoNN e CR e Ward
e Bonsai e Curet e DSA
e RNNPool o Letter e Google
e USPS e HAR
\ e SqueezeNet ) Q mageNet « SCUT-HEAD)

( loT Devices \
° Arduino Uno
(2KB SRAM, 32KB Flash)

° Arduino Due

(96KB SRAM, 512KB Flash) Fixed-Point (8, 16-bit)
o STM32H747 Posit (8, 9, 10, 12, 16-bit)
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\(1 MB SRAM, 2MB Flash)) ( TFLite Zero-Skew (8-bit))

4 Representations )

Floating-Point (32-bit)
BFloat (16-bit)




Running SqueezeNet on ImageNet-1K
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Quantitative Comparison with Shiftry

Accuracy Loss (%)
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Qualitative Comparison with Shiftry

Shiftry-Fixed on Face-C Model MinUn-Fixed on Face-C Model



Conclusion

MinUn is a new framework for compiling ML models on embedded
devices.

MinUn:

€ Addresses the representation independence, bitwidth exploration
and memory fragmentation challenges.

€ Generates C / C++ codes for bare-metal environments.

Our evaluation shows that MinUn generates ML models which are
more accurate and consume less RAM than prior SOTA.

Instructional Repository: https://github.com/Shikhard/MinUn
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