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Embedded Devices are Ubiquitous



Previous IoT Approaches: ML-On-Cloud
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Limitations of ML-On-Cloud

High Communication Latency

Poor Efficiency in Battery-Operated Scenarios

Data Privacy Considerations



✔ No need to communicate data 
to the cloud for inference.

✔ Suitable for battery-operated 
scenarios as communication 

latencies are eliminated.

✔ Data doesn't leave the 
source.

Solution: ML-On-Edge-Devices (TinyML)
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Advances in TinyML Models
Decision Trees Recurrent Neural Networks

Nearest Neighbors Special Pooling Operators

Bonsai
ICML 2017

ProtoNN
ICML 2017

RNNPool
NeurIPS 2020

FastGRNN
NeurIPS 2018



Frameworks: The Task and the Challenges

Problem Statement: To generate efficient C / C++ codes for TinyML 
models, which can be executed on tiny microcontrollers with KBs of 
main memory.

Challenge 1: Which number representation should the program use?

Challenge 2: What bitwidth should the program assign to a variable?

Challenge 3: What about memory management?



Challenge: Representation Independence

Fixed-Point Representation

Zero-Skew Representation

Posit Representation



Example:

Challenge: Bitwidth Exploration

Interpreted Value Error

8 5              ≈ 101 101 / 25 ≈ 3.156 10-2

16 9              ≈ 1608 1608 / 29 ≈ 3.1406 10-3

Fixed-Point Representation
Linear Classifier

Very Large Exploration Space: For a program with N variables and k bitwidth 
options, the total number of possible assignments is      .



Challenge: Memory Fragmentation

...
a = malloc();
b = malloc();
c = malloc();
d = malloc();

b = MatMul(a, c);
d = MatMul(a, b);
free(a);
free(c);

e = malloc();
e = MatMul(b, d);
...

RAM Limit



MinUn: Addressing the Challenges

MinUn Compiler: Offers representation and platform-independent 
design, which is easily integrable with any representation of choice.

Haunter Bitwidth Exploration Algorithm: Makes use of information 
regarding both the variable size and it's impact on overall program 
accuracy to generate candidate bitwidth assignments, within a strict 
memory budget. 

Optimum Memory Management: Makes use of Knuth's Algorithm 
X, for optimally assigning scratch space to variables.



MinUn: Overview 
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Related TinyML Frameworks

SeeDot Shiftry

-> Compiles floating-point 
code into fixed-point code.

-> Only generates uniform 
bitwidth (8 / 16-bit) codes.

-> Ignores the memory 
fragmentation problem and 
assumes sufficient RAM is 
always available.

OOPSLA 2020PLDI 2019

-> Compiles floating-point 
code into fixed-point code.

-> Generates variable 
bitwidth (8 and 16-bit) 
codes.

-> Offers a suboptimal 
greedy heuristic for 
preventing fragmentation.

TFLite
CVPR 2018

-> Compiles floating-point 
code into zero-skew code.

-> Only generates uniform 
bitwidth (8 / 16-bit weights 
and 32-bit biases) codes.

-> Uses TFLite interpreter 
with memory overheads. 
Leaves memory handling 
to the end user.



Experiments

Models

RepresentationsIoT Devices

Datasets

● FastGRNN
● ProtoNN
● Bonsai
● RNNPool
● SqueezeNet

● CIFAR
● CR
● Curet
● Letter
● USPS
● ImageNet

●      Arduino Uno
   (2KB SRAM, 32KB Flash)
●      Arduino Due

(96KB SRAM, 512KB Flash)
●      STM32H747

   (1MB SRAM, 2MB Flash)

● Floating-Point (32-bit)
● BFloat (16-bit)
● Fixed-Point (8, 16-bit)
● Posit (8, 9, 10, 12, 16-bit)
● TFLite Zero-Skew (8-bit)

● MNIST
● Ward
● DSA
● Google
● HAR
● SCUT-HEAD



Running SqueezeNet on ImageNet-1K

Classification Accuracy
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Quantitative Comparison with Shiftry



Qualitative Comparison with Shiftry

Shiftry-Fixed on Face-C Model MinUn-Fixed on Face-C Model



Conclusion
➔ MinUn is a new framework for compiling ML models on embedded 

devices.

➔ MinUn:

◆ Addresses the representation independence, bitwidth exploration 
and memory fragmentation challenges.

◆ Generates C / C++ codes for bare-metal environments.

➔ Our evaluation shows that MinUn generates ML models which are 
more accurate and consume less RAM than prior SOTA.

Instructional Repository: https://github.com/ShikharJ/MinUn

https://github.com/ShikharJ/MinUn

