MinUn

Accurate ML Inference on Microcontrollers

Shikhar Jaiswal, Rahul Goli, Aayan Kumar, Vivek Seshadri, Rahul Sharma

Microsoft Research India

Instructional Repository: https://github.com/ShikharJ/MinUn

Embedded Devices are Ubiquitous

Previous IoT Approaches: ML-On-Cloud

Limitations of ML-On-Cloud

High Communication Latency

Poor Efficiency in Battery-Operated Scenarios

Data Privacy Considerations

Solution: ML-On-Edge-Devices (TinyML)

 No need to communicate data to the cloud for inference.

 Suitable for battery-operated scenarios as communication latencies are eliminated.

> Data doesn't leave the source.

Advances in TinyML Models

Decision Trees

Bonsai ICML 2017

Recurrent Neural Networks

FastGRNN NeurIPS 2018

Nearest Neighbors

ProtoNN ICML 2017

Special Pooling Operators

Frameworks: The Task and the Challenges

- **Problem Statement:** To generate efficient C / C++ codes for TinyML models, which can be executed on tiny microcontrollers with KBs of main memory.
- **Challenge 1:** Which number representation should the program use?
- Challenge 2: What bitwidth should the program assign to a variable?
- Challenge 3: What about memory management?

Challenge: Representation Independence

Fixed-Point Representation

 $q_b = \lfloor r \times 2^S \rfloor$

Zero-Skew Representation

$$q_b = \lfloor \frac{r}{S} \rfloor + Z$$

Posit Representation

$$r = (-1)^s \times (2^{2^{es}})^k \times 2^E \times 1.F$$

Challenge: Bitwidth Exploration

Linear Classifier

 $W_{1} := (-2.139562 \ 1.885351)$ $X_{1} := \begin{pmatrix} 1.185109 \\ -2.206466 \end{pmatrix}$ $B_{1} := (0.146048)$ $return \ (W_{1} \times X_{1}) + B_{1}$

Fixed-Point Representation $q_b = |r \times 2^S|$

Example: $r = \pi = 3.14159$

b	S	q_b	Interpreted Value	Error
8	5	$\lfloor \pi \times 2^5 floor$ ≈ 101	101 / 2 ⁵ ≈ 3.156	10 ⁻²
16	9	$\lfloor \pi \times 2^9 \rfloor \approx$ 1608	1608 / 2 ⁹ ≈ 3.1406	10 ⁻³

Very Large Exploration Space: For a program with N variables and k bitwidth options, the total number of possible assignments is k^N .

Challenge: Memory Fragmentation

MinUn: Addressing the Challenges

MinUn Compiler: Offers representation and platform-independent design, which is easily integrable with any representation of choice.

Haunter Bitwidth Exploration Algorithm: Makes use of information regarding both the variable size and it's impact on overall program accuracy to generate candidate bitwidth assignments, within a strict memory budget.

Optimum Memory Management: Makes use of Knuth's Algorithm X, for optimally assigning scratch space to variables.

MinUn: Overview

Related TinyML Frameworks

TFLite

CVPR 2018

-> Compiles floating-point code into zero-skew code.

-> Only generates uniform bitwidth (8 / 16-bit weights and 32-bit biases) codes.

-> Uses TFLite interpreter with memory overheads. Leaves memory handling to the end user. **SeeDot**

PLDI 2019

-> Compiles floating-point code into fixed-point code.

-> Only generates uniform bitwidth (8 / 16-bit) codes.

-> Ignores the memory fragmentation problem and assumes sufficient RAM is always available.

Shiftry

OOPSLA 2020

-> Compiles floating-point code into fixed-point code.

-> Generates variable bitwidth (8 and 16-bit) codes.

-> Offers a suboptimal greedy heuristic for preventing fragmentation.

Experiments

Datasets

- CIFAR MNIST
 - CR Ward
 - Curet DSA •
 - Letter Google
 - USPS HAR •
 - **SCUT-HEAD** ImageNet •

Representations Floating-Point (32-bit) BFloat (16-bit) • Fixed-Point (8, 16-bit) • Posit (8, 9, 10, 12, 16-bit) **TFLite Zero-Skew (8-bit)**

Running SqueezeNet on ImageNet-1K

Quantitative Comparison with Shiftry

Qualitative Comparison with Shiftry

Shiftry-Fixed on Face-C Model

MinUn-Fixed on Face-C Model

Conclusion

→ MinUn is a new framework for compiling ML models on embedded devices.

→ MinUn:

- Addresses the representation independence, bitwidth exploration and memory fragmentation challenges.
- Generates C / C++ codes for bare-metal environments.
- → Our evaluation shows that MinUn generates ML models which are more accurate and consume less RAM than prior SOTA.

Instructional Repository: https://github.com/ShikharJ/MinUn