
MinUn

Accurate ML Inference on Microcontrollers

Shikhar Jaiswal, Rahul Goli, Aayan Kumar, Vivek Seshadri, Rahul Sharma

Microsoft Research India

Instructional Repository: https://github.com/ShikharJ/MinUn

https://github.com/ShikharJ/MinUn

Embedded Devices are Ubiquitous

Previous IoT Approaches: ML-On-Cloud

Data

Data

Data

Prediction

Prediction

PredictionIoT Device

IoT Device

IoT Device

ML Model on Cloud

Limitations of ML-On-Cloud

High Communication Latency

Poor Efficiency in Battery-Operated Scenarios

Data Privacy Considerations

✔ No need to communicate data
to the cloud for inference.

✔ Suitable for battery-operated
scenarios as communication

latencies are eliminated.

✔ Data doesn't leave the
source.

Solution: ML-On-Edge-Devices (TinyML)

Microcontroller

FPGA

IoT Devices

Advances in TinyML Models
Decision Trees Recurrent Neural Networks

Nearest Neighbors Special Pooling Operators

Bonsai
ICML 2017

ProtoNN
ICML 2017

RNNPool
NeurIPS 2020

FastGRNN
NeurIPS 2018

Frameworks: The Task and the Challenges

Problem Statement: To generate efficient C / C++ codes for TinyML
models, which can be executed on tiny microcontrollers with KBs of
main memory.

Challenge 1: Which number representation should the program use?

Challenge 2: What bitwidth should the program assign to a variable?

Challenge 3: What about memory management?

Challenge: Representation Independence

Fixed-Point Representation

Zero-Skew Representation

Posit Representation

Example:

Challenge: Bitwidth Exploration

Interpreted Value Error

8 5 ≈ 101 101 / 25 ≈ 3.156 10-2

16 9 ≈ 1608 1608 / 29 ≈ 3.1406 10-3

Fixed-Point Representation
Linear Classifier

Very Large Exploration Space: For a program with N variables and k bitwidth
options, the total number of possible assignments is .

Challenge: Memory Fragmentation

...
a = malloc();
b = malloc();
c = malloc();
d = malloc();

b = MatMul(a, c);
d = MatMul(a, b);
free(a);
free(c);

e = malloc();
e = MatMul(b, d);
...

RAM Limit

MinUn: Addressing the Challenges

MinUn Compiler: Offers representation and platform-independent
design, which is easily integrable with any representation of choice.

Haunter Bitwidth Exploration Algorithm: Makes use of information
regarding both the variable size and it's impact on overall program
accuracy to generate candidate bitwidth assignments, within a strict
memory budget.

Optimum Memory Management: Makes use of Knuth's Algorithm
X, for optimally assigning scratch space to variables.

MinUn: Overview
Input: TensorFlow
/ PyTorch Model &

Memory Limits

Generated Shiftry
DSL

AST
(Device Agnostic)

Device-Specific
C++

Inference Code

AST with Scratch
Assignment

AST with
Suitable Bitwidth

Assignment

C++ Inference
Code

AST with Chosen
Bitwidth

Assignment

ONNX
Converter

Shiftry AST
Parser

Haunter
Bitwidth

ExplorationOptimal
Memory

Management

x86 CodeGen
(C++)

ARM / Arduino
CodeGen

(C++)

Code Execution
with Memory

Checks

Related TinyML Frameworks

SeeDot Shiftry

-> Compiles floating-point
code into fixed-point code.

-> Only generates uniform
bitwidth (8 / 16-bit) codes.

-> Ignores the memory
fragmentation problem and
assumes sufficient RAM is
always available.

OOPSLA 2020PLDI 2019

-> Compiles floating-point
code into fixed-point code.

-> Generates variable
bitwidth (8 and 16-bit)
codes.

-> Offers a suboptimal
greedy heuristic for
preventing fragmentation.

TFLite
CVPR 2018

-> Compiles floating-point
code into zero-skew code.

-> Only generates uniform
bitwidth (8 / 16-bit weights
and 32-bit biases) codes.

-> Uses TFLite interpreter
with memory overheads.
Leaves memory handling
to the end user.

Experiments

Models

RepresentationsIoT Devices

Datasets

● FastGRNN
● ProtoNN
● Bonsai
● RNNPool
● SqueezeNet

● CIFAR
● CR
● Curet
● Letter
● USPS
● ImageNet

● Arduino Uno
 (2KB SRAM, 32KB Flash)
● Arduino Due

(96KB SRAM, 512KB Flash)
● STM32H747

 (1MB SRAM, 2MB Flash)

● Floating-Point (32-bit)
● BFloat (16-bit)
● Fixed-Point (8, 16-bit)
● Posit (8, 9, 10, 12, 16-bit)
● TFLite Zero-Skew (8-bit)

● MNIST
● Ward
● DSA
● Google
● HAR
● SCUT-HEAD

Running SqueezeNet on ImageNet-1K

Classification Accuracy

P
ea

k
R

A
M

 U
sa

ge
 (M

B
s)

32-bit Floating-Point

Shiftry-Fixed (8 and 16-bit)

MinUn-Posit (8 and 16-bit)8-bit TFLite Zero-Skew

High

High

Low

Low

4

3

2

1

-0.21%, 3.81x

-6.69%, 2x

-9.29%, 3.98x

Quantitative Comparison with Shiftry

Qualitative Comparison with Shiftry

Shiftry-Fixed on Face-C Model MinUn-Fixed on Face-C Model

Conclusion
➔ MinUn is a new framework for compiling ML models on embedded

devices.

➔ MinUn:

◆ Addresses the representation independence, bitwidth exploration
and memory fragmentation challenges.

◆ Generates C / C++ codes for bare-metal environments.

➔ Our evaluation shows that MinUn generates ML models which are
more accurate and consume less RAM than prior SOTA.

Instructional Repository: https://github.com/ShikharJ/MinUn

https://github.com/ShikharJ/MinUn

