MinUn

Accurate ML Inference on Microcontrollers

Shikhar Jaiswal, Rahul Goli, Aayan Kumar, Vivek Seshadri, Rahul Sharma

Microsoft Research India

Instructional Repository: https://github.com/ShikharJ/MinUn
B= Microsoft

https://github.com/ShikharJ/MinUn

Previous loT Approaches: ML-On-Cloud

Data

loT Device Pr edicﬁo"

Data

v

Prediction

pata

ML Model on Cloud

Pred'\c"‘on

loT Device

Limitations of ML-On-Cloud

@

D Poor Efficiency in Battery-Operated Scenarios

o

High Communication Latency

Data Privacy Considerations

Solution: ML-On-Edge-Devices (TinyML)

loT Devices

‘JDCDODOODDODOOQOO

v/ No need to communicate data
to the cloud for inference.
AEEETTETENEN. .
Microcontroller
v Suitable for battery-operated
scenarios as communication
latencies are eliminated.

¢’ Data doesn't leave the
source.

Advances in TinyML Models

Decision Trees Recurrent Neural Networks
Bonsai FastGRNN
ICML 2017 NeurlPS 2018
Nearest Neighbors Special Pooling Operators

P

ProtoNN R 2
ICML 2017 NeurlPS 2020

Frameworks: The Task and the Challenges

Problem Statement: To generate efficient C / C++ codes for TinyML
models, which can be executed on tiny microcontrollers with KBs of

main memory.

Challenge 1: Which number representation should the program use?
Challenge 2: What bitwidth should the program assign to a variable?

Challenge 3: What about memory management?

Challenge: Representation Independence

Fixed-Point Representation Accuracy Loss (%)
_ S . -] N
qb p— L’)" X 2 J Fixed (8-bit) [Posit (8-bit) [l Zero-Skew (8-bit)

Zero-Skew Representation
r
@w=|=|+72 40 +
5]

Posit Representation
20 +

0 II [

r = (_1)8 % (22€S)k < 2E <« 1. F FastGRNN ProtoNN Bonsai RNNPool

(1|’_>|--.|(‘,\

Challenge: Bitwidth Exploration

Linear Classifier

W, = (—2.139562 1.885351)

5. . (1185109
L=\ —2.206466

By := (0.146048)

return (W, x X))+ B,

S
Fixed-Point Representation Gy — LT X 2 J

Example: ¥ = 1 = 3.14159

b S db Interpreted Value | Error
5 |_7T><25Jz101 101 /2° = 3.156 1072
16 | 9 ||rx2°|~1608 1608/2°~3.1406 & 107

Very Large Exploration Space: For a program with N variables and k bitwidth

options, the total number of possible assignments is kN

Challenge: Memory Fragmentation

5 = malloc();
0

b = MatMul(o, <),
d = MatMul(a, b);
free(a);
free(c);

e = malloc();

& = MatMul(s,),

RAM Limit
64 128 192 256 320 384 ’ RAM
D
64 128 192 256 320 384 ’ RAM
D
64 128 192 256 320 384 ’ RAM
D I
64 128 192 256 320 384 ’ RAM

MinUn: Addressing the Challenges

MinUn Compiler: Offers representation and platform-independent
design, which is easily integrable with any representation of choice.

Haunter Bitwidth Exploration Algorithm: Makes use of information
regarding both the variable size and it's impact on overall program
accuracy to generate candidate bitwidth assignments, within a strict
memory budget.

Optimum Memory Management: Makes use of Knuth's Algorithm
X, for optimally assigning scratch space to variables.

MinUn: Overview

Input: TensorFlow
/ PyTorch Model &
Memory Limits

Device-Specific
C++
Inference Code

ARM / Arduino
CodeGen
(C++)

AST with Scratch
Assignment

] ONNX f
Converter Generated Shiftry
J DSL
Shiftry AST
Parser
AST
(Device Agnostic)
x86
Haunter
Bitwidth <
Optimal Exploration
Memory
Management (AST with
Suitable Bitwidth
L Assignment K

Code Execution
with Memory

Checks

AST with Chosen
Bitwidth
Assignment

CodeGen
(C++)

l

C++ Inference
Code

Related TinyML Frameworks

/" TFLite

CVPR 2018

-> Compiles floating-point
code into zero-skew code.

-> Only generates uniform
bitwidth (8 / 16-bit weights
and 32-bit biases) codes.

-> Uses TFLite interpreter
with memory overheads.
Leaves memory handling
to the end user.

_ /

/ SeeDot

PLDI 2019

-> Compiles floating-point
code into fixed-point code.

-> Only generates uniform
bitwidth (8 / 16-bit) codes.

-> Ignores the memory
fragmentation problem and
assumes sufficient RAM is
always available.

/" Shiftry

OOPSLA 2020

-> Compiles floating-point
code into fixed-point code.

-> Generates variable
bitwidth (8 and 16-bit)
codes.

-> Offers a suboptimal
greedy heuristic for
preventing fragmentation.

_ /

_ /

Experiments

4 Models) (Datasets \
e FastGRNN e CIFAR e MNIST
e ProtoNN e CR e Ward
e Bonsai e Curet e DSA
e RNNPool o Letter e Google
e USPS e HAR
\ e SqueezeNet) Q mageNet « SCUT-HEAD)

(loT Devices \
° Arduino Uno
(2KB SRAM, 32KB Flash)

° Arduino Due

(96KB SRAM, 512KB Flash) Fixed-Point (8, 16-bit)
o STM32H747 Posit (8, 9, 10, 12, 16-bit)

[J
[J
[J
[J
\(1 MB SRAM, 2MB Flash)) (TFLite Zero-Skew (8-bit))

4 Representations)

Floating-Point (32-bit)
BFloat (16-bit)

Running SqueezeNet on ImageNet-1K

High A = = =
4 - [32-bit Floatlng-Pomt]
o
=
o
c S~
»
= -6.69%, 2x
S
= [Shiftry-Fixed (8 and 16-bit)]

4
§ -9.29%, 3.98x -0.21%, 3.81x
{ = [8-bit TFLite Zero-Skew] [MinUn-Posit (8 and 16-bit)]
Low -

Low Classification Accuracy High

25 —

20

19 =

10 A

Quantitative Comparison with Shiftry

Accuracy Loss (%)

Shiftry-Fixed [MinUn-Fixed

FastGRNN ProtoNN Bonsai

RNNPool

1.00

0.75

0.50

0.25

Relative RAM Consumption

Shiftry-Fixed [MinUn-Fixed

0.00

FastGRNN ProtoNN

Bonsai

RNNPool

Qualitative Comparison with Shiftry

Shiftry-Fixed on Face-C Model MinUn-Fixed on Face-C Model

Conclusion

MinUn is a new framework for compiling ML models on embedded
devices.

MinUn:

€ Addresses the representation independence, bitwidth exploration
and memory fragmentation challenges.

€ Generates C / C++ codes for bare-metal environments.

Our evaluation shows that MinUn generates ML models which are
more accurate and consume less RAM than prior SOTA.

Instructional Repository: https://github.com/Shikhard/MinUn

https://github.com/ShikharJ/MinUn

